A dual−ion battery cathode via oxidative insertion of anions in a metal–organic framework

Aubrey, M. L.; Long, J. R. J. Am. Chem. Soc. 2015, 137, 13594–13602.

Abstract

A redox−active metal–organic framework, Fe2(dobpdc) (dobpdc4– = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate), is shown to undergo a topotactic oxidative insertion reaction with a variety of weakly coordinating anions, including BF4 and PF6. The reaction results in just a minor lattice contraction, and a broad intervalence charge-transfer band emerges, indicative of charge mobility. Although both metal- and ligand-based oxidations can be accessed, only the former were found to be fully reversible and, importantly, proceed stoichiometrically under both chemical and electrochemical conditions. Electrochemical measurements probing the effects of nanoconfinement on the insertion reaction revealed strong anion size and solvent dependences. Significantly, the anion insertion behavior of Fe2(dobpdc) enabled its use in the construction of a dual-ion battery prototype incorporating a sodium anode. As a cathode, the material displays a particularly high initial reduction potential and is further stable for at least 50 charge/discharge cycles, exhibiting a maximum specific energy of 316 Wh/kg.

Changelog

The fits to the Mössbauer have been corrected to better match the parameters of previously reported compounds. (link)

  1. Ziebel, M. E.; Gaggioli, C. A.; Turkiewicz, A. B.; Ryu, W.; Gagliardi, L.; Long, J. R. Effects of Covalency on Anionic Redox Chemistry in Semiquinoid-Based Metal–Organic Frameworks. J. Am. Chem. Soc. 2020, 142, 2653-2664.